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SPACETIME NONLOCALITY AND RETARDATION
IN RELATIVISTIC HEAVY-ION COLLISIONS

BRIAN W. BUSH, J. RAYFORD NIX, and ARNOLD J. SIERK
Theoretical Division, Los Alamos National Laboratory
Los Alamos, New Mezico 87545, USA

ABSTRACT

We discuss the exact numerical solution of the classical relativistic equations of mo-
tion for a Lagrangian corresponding to point nucleons interacting with massive sce'ar
and vector meson fields. The equations of motion contain both external retarded
Lorentz forces and radiation-reaction forces; the latier involve nonlocal terms that de-
pend upon the past history of the nucleon in addition to terms analogous to those of
classical electrodynamics. The resulting microscopic many-body approach to relativis-
tic heavy-ion collisions is manifestly Lorentz covariant and allows for nonequilibrium
phenomena, interactions with correlated clusters of nucleons, and particle production.
For point nucleons, the asymptotic behavior of nucleonic motion prior to the collision
is exponential, with a range in proper time of approximately 0.5 fm. However, this be-
havior is altered by the finite nucleon size, whose effect we are currently incorporating
into our equations of motion. The spacetime nonlocality and retardation that will be
present in the solutions of these equations may be responsible for significant collective
cffects ir. relativistic heavy-ion collisions.

1. Introduction

As we discussed at the Sixth Winter Workshop on Nuclear Dynamics,! the con-
ditions encountered in relativistic heavy-ion collisions at AGS, CERN, and RHIC
energies are very different from those necessary for the valid application of most of
the approximation methods and models used previously to describe such collisions.
In particular, the inieraction time is extremely short, and the nucleon mean free
path, force range, and internucieon separation are all comparable in size. To satisfy
these conditions a privri, a fully microscopic many-body treatment that allows for
nonequilibrium phenomena, interactions with correlated clusters of nucleons, and par-
ticle production appears nccessary. Furthermore, the approach must be manifeatly
Lorentz covariant, or problems with causality immediately arise. On the other hand,
at hbombarding energies of many GeV per nucleon, the reduced Compton wavelength
of prajectile nucleons is sufficiently small that quantal coherence effects are negligible
and the classical approximation for nucleon trajectories should be valid. A natural
approach that satisfies all these requirements is classical relativistic hadrodynarmies,
corresponding to nucleons interacting with massive sealar and vector meson fields,



2. Classical Relativistic Hadrodynamics

Our physical input consists of only three axioms: (1) Lorentz invariance, which
includes energy and momentum conservation, (2) point nuclcons interacting with
massive scalar and vector mrson fields, and (3) the classical approximation applied in
domains where it should be reasonably valid. We then strive for an exact numerical
solution of the resulting classical relativistic equations of motion rather than making
the usual mean-field approximation or perturbative expansion in coupling strength.
For N point nucleons of mass M interacting with scalar and vector meson fields
characterized by masses m, and m, and coupling constants g, and g,, the Lagrangian
density is

L= —§M Z /dr,. 6(‘)[: — qn(7n)] Vnav® + —a ¢0*¢ — —m. 341 — po

n=xl

—_ uv _l_ 2 b _ »
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Here ¢ is the scalar potential, p is the scalar density, A* is the vector potential,
Fvw = g¥4* — 3“A* is the vector field strength tensor, and J* is the vector current
density. The snacetime trajectory of nucleon n as a function of its proper time 7, is
denoted by (), and its four-velocity is v4 = dg*(r,)/dTn. We use units in which
h = ¢ =1, and a metric specified by g** = diag(l,-1,-1,-1).
The covariant equations of motion for each of the N nucleons that result from the
Lagrangian density (1) are?™

M a" = g, (¢ — v"1") O, ems + 9o Fluivs
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with four-acceleration a* = dv*/dr and effective nucleon mass
r J 1
M =M+ m.g.’/ dr’ l(m 8) + 9uPext + 2mvgv . (’)

The right-hand sides of Eqs. (2) contain both external retarded Lorentz forces and
radiation-reaction forces. The latter involve terms analogous to those of classical
clectrodynamics, as well as the nonlocal terms
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which depend upon the past history of the nu(lmn The fmlr-vw'tor separation is
sz gt (r) — ("), with iuterval o = (1,,*“) . Similar equations of motion given in
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Fig. 1. Plots of the characteristic equation th». detsrmines the asymptotic growth constant of
point nucleonic motion prior t the collisior: (s t .. ety of coupling constants (left-hand side), and
the resulting dependence of the asymptotic #cowtl constant upot: the scalar and vector interaction
strengths (right-hand side).

Refs. 1, 2, and 4 for point nucleons interacting with a massive vector field are missing
a crucial contribution to the effective nucleon mass, which was responsible for the
inatility in Ref. | to obtain solutions for realistic values of the interaction strength.

We identify the scalar meson field with the ¢ meson, whose mass we take to
he* m, = 550 MeV, and the vector meson field with the w meson, whose maas is®
m, = 781.95 + 0.14 MeV. For .he nucleon mass M we use the average of the neutron
and proton masses.

3. Asymptotic Behavior

One can show that an acceleration which grows exponentially, a'(r) ~ C'exp/xr),
satisfies Eqs. (2)-(5) asymptotically in che limit 7 — —o0, provided that the asymp-
totic growth constant « is determined from the characteristic equation

/x?

+o [m.." - (m.' - 2&’) (m.,2 + x’)m - g-m,.-c'] /&*=3M =0 . (6)
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This equation is plotted in the left-hand side of Fig. | for two sets of coupling con-
stanty. The first set corresponds to the values g,? = 7.29 and ¢,? = 10.81 that are
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Fig. 2. Transverse four-acceleration a* experienced by point nucleons, for two values of *he impact
parameter b.

required to properly saturate symmetric nuclear matter in the mean-field treatment
of the relativistic ¢-w model of Serot and Walecka.® The second set corresponds to the
values g,? = 8.19 and g¢,% = 17.26 determined by Bryan and Scott” from an analysis
of nucleon-nucleon scattering at laboratory kinetic energies between 0 and 350 MeV.

The inverse of x gives the range in proper time of the spacetime nonlocality that
is present for point nucleons. This nonlocality range is k~! = 0.516 fm for the Serot-
Walecka constants and x~! = 0.635 fm for the Bryan-Scott constants. As shown in
the right-hand side of Fig. 1, the asymptotic growth constant x decreases and the
nonlocality range x~' increases with increasing scalar or vector interaction strength.

4. Numerical Solution

For some special cases, we have solved Eqs. (2)-(5) by converting the differential
equations into the integral equations

1 no
a’ ( T) = ;I ./: dT' [gl (9"" - v“vy)0u¢ell. + 9v F:;;Uv + f.ll + f:‘ + glvuav“v
xcxp(—/' dr”M'/g') , (7)

with g = 1g,7 4 44,7, These equations, which are solved iteratively by use of a finite-
difference method, automatically satisfy the boundary conditions® that a* (r) — 0
as 7 — +00. Figures 2 and 3 are examples for a single point nucleon incident at
14.5 GeV kinetic energy on a scattering center that remains fixed in the laboratory
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Fig. 3. Longitudinal four-acceleration a® experienced by point nucleons, for two values of the impact
parameter b.

system. These examples are calculated for a vector interaction only, although we
have subsequently obtained solutions for both scalar and vector interactions simulta-
neously. Because of the spacetime nonlocality, which i3 magnified in a given frame
by the Lorentz factor v, the collision process extends over an appreciable region of
spacetime.

5. Effect of the Finite Nucleon Size

In the nonrelativistic limit, the validity of the above classical treatment of point nu-
cleons requires that the spacetime nonlocality range x~! be large compared to both the
quantal uncertainty and the size of the nucleon. The former requirement is actually
satisfied in the nuclear case, even though it is violated in classical electrodynamics.?
The difference arises because the nucleon mass is about 1800 times the electron mass
and the strong interaction strength is about 1300 times the electromagnetic interac-
tion strength. However, the nonlocality range of approximately 0.5 fm in the nuclear
case is comparabls to the size of the nucleon. In particular, the proton charge dis-
tribution is approximately exponential in form, with a roct-mean-square radius'® of
0.862 : 0.012 fm. We ace currently incorporating the effect of the finite nucleon size
into our equations of motion. For an extended charged particle in nonrelativistic clas-
sical electrodynamics, the exponential asymptotic hehavior is removed when tiie size
of the particle exceeds the nonlocality range, with the spacetime nonlocality shifted
to the region fo'lowing the collision.!! We anticipate a similar dependence on size in
the nuclear case.

) |



6. Conclusions

Classical relativistic hadrodynamics, corresponding to nucleons interacting with
massive scalar and vector meson fields, permits the systematic study of many-body
collective dynamics in a way that is manifestly Lorentz covariani. Spacetime nonlo-
cality, retardation, nonequilibrium phenomena, interactions with correlated clusters
of nucleons, and particle production are all included automatically. However, it is
crucial in this approach to incorporate the effect of the finite nucleon size into the
equations of motion. The spacetime nonlocality and retardation that will be present
in the solutions of these equations may be responsible for significant collective effects
in relativistic heavy-ion collisions.
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